NOVEL CYCLOAROMATIZATION IN REFORMATSKY REACTION ON ∞ -OXOKETENE DITHIOACETALS: A REGIOSELECTIVE SYNTHESIS OF SUBSTITUTED ETHYL 2-HYDROXY-6-METHYLTHIOBENZOATES¹

> Apurba Datta, Hiriyakkanavar Ila* and Hiriyakkanavar Junjappa* Department of Chemistry, North-Eastern Hill University, Shillong 793 003, Meghalaya, India

<u>Summary</u>: A novel cycloaromatization reaction leading to substituted ethyl 2-hydroxy-3-methylthiobenzoates <u>6</u> by condensation of α -oxoketene dithioacetals <u>1</u> with excess of Reformatsky reagent <u>2</u> from ethyl bromoacetate through intermediate dienes <u>3</u> has been reported.

In one of our recent reports, we had observed that ethyl bromoacetate under Reformatsky reaction conditions, adds to α -oxoketene dithioacetals in 1,2 fashion to yield the corresponding 1,1-bis(methylthio)-3-aryl/alkyl-4-ethoxycarbonyl-1,3-butadienes <u>3</u> in good yields². We considered these dienes <u>3</u> of potential synthetic interest, if they undergo further condensation with the Reformatsky reagent <u>2</u> on ethoxycarbonyl group³, since the resulting zinc enolates <u>4</u> should undergo facile electrocyclic ring closure followed by elimination of methylmercaptan to give the regiospecifically substituted 2-hydroxy-6-methylthiobenzoates <u>6</u> or the corresponding salicylates after desulphurization. We have realized this goal in one pot reaction and report our preliminary results in this communication.

When the dithioacetal <u>la</u> was refluxed with excess of <u>2</u> (4 eqv) in ether/benzene, work-up of the reaction mixture yielded a crystalline solid, which was characterized as ethyl 2-hydroxy-4-methyl-6-methylthiobenzoate (<u>6a</u>) (60%); \mathcal{Y}_{max} (KBr): 3250(br,OH); 1700(CO) cm⁻¹; ¹H n.m.r. (90 MHz) (CDCl₃) § 1.33(t,3H,C<u>H₃</u>CH₂); 2.13(s,3H,SC<u>H₃</u>); 2.24(s,3H,C<u>H₃</u>); 4.29(q,2H,OC<u>H₂CH₃</u>); 6.30(brs,1H,<u>H</u>-5); 6.40(brs,1H,<u>H</u>-3); 11.31(brs,OH,exchangeable with D₂O); m/z 226(M⁺,69%); 180(100). The structure of <u>6a</u> was further confirmed by its desulphurization with Raney Nickel, which afforded the corresponding ethyl m-cresotate(7)^{4,5}. The other substituted 2-hydroxy-6methylthiobenzoates <u>6b-e</u> and the corresponding 4,5-annelated derivatives <u>6f-j</u> were similarly obtained from the respective dithioacetals <u>1b-j</u> under identical conditions in 52-63% overall yields (Table)⁶. One of the cyclic benzoates <u>6h</u>⁷ was also desulphurized under similar conditions to give <u>8</u>. The ¹H n.m.r. spectral data⁷ of <u>8</u> further confirmed the regiochemistry of the products <u>6</u>.

The probable mechanism for the formation of $\underline{6}$ from $\underline{1}$ and $\underline{2}$ is depicted in the Scheme. The

497

intermediacy of the diene <u>3</u> was established by reacting <u>3b</u> with <u>2</u> (1.5 eqv) in a separate experiment, which afforded the corresponding <u>6b</u> in 72% yield. The dienes <u>3</u> could also be trapped in few reactions (<u>la</u> and <u>1b</u>) along with <u>6</u> by curtailing the reaction time (8 hr) under identical conditions. The reaction proceeds as expected, thus the acylation of <u>2</u> with <u>3</u> results in the formation of intermediate zinc enolate <u>4</u> which on electrocyclization followed by elimination of methylmercaptan during acid work-up affords <u>6</u> through the intermediate <u>5</u>. The overall transformation represents a novel cycloaromatization⁸ involving sequential condensation of <u>2</u> with α -oxoketene dithioacetals <u>1</u> to give dienes <u>3</u> as five carbon fragments and then cyclic six carbon aromatic systems <u>6</u> in one pot reaction (a 3C + 2C + 1C approach), thus providing acetoacetate dianion equivalency^{8,9} to the Reformatsky reagent <u>2</u>. The reaction is therefore a facile entry to substituted 2-hydroxy-6-methylthio benzoates <u>6</u> and ultimately to the corresponding salicylates¹⁰ from easily accessible α -oxoketene dithioacetals. Further work to study the scope and the mechanism of the reaction is in progress.

In a typical experiment, a suspension of activated zinc (5.2g, 0.08g atom), few crystals of iodine and ethyl bromoacetate (4.8 ml, 0.04 mol) in dry ether (50 ml) is refluxed with

3

Scheme

Entry	Starting material	r r ¹	Product OH CO ₂ Et R SMe	Yield <u>ª</u> [%]	M.P. [℃]
1	<u>1a</u>	CH ₃ H	$\underline{6a}$, $R = CH_3$	60	78
2	<u>1b</u>	₄-CIC ₆ H₄ H	6 <u>6</u> , R = ₄-CIC ₆ H	l ₄ 63	108
3	1 <u>c</u>	C ₈ H ₅ H	$\underline{6c}$, $R = C_6 H_5$	60	72
4	<u>1d</u>	И П	<u>6d</u> , R =	63	91
5	<u>1e</u>	Ку н	$\underline{6e}, R = $ HO HO HO HO SM (H ₂ C)	58 SyzEt le	92
6	lf	-(CH ₂) ₃	<u>6f</u> ,n=1	52	68
7	<u>1g</u>	-(CH ₂) ₄ -	<u>6g</u> , n = 2	57	138
8	<u>1h</u>	$-(CH_2)_5-$	<u>6h</u> , n = 3	60	128
		R^2 (CH ₂) _n R^2 (CH ₂) _n R^2 (CH ₂) _n			
9	<u>1i</u>	$R^2 = H$; $n = 1$	<u>6i</u> , R ² = H ; n=	-1 55	117

10 <u>1j</u> $R^2 = MeO; n = 2$ <u>6j</u>, $R^2 = MeO; n = 2$ 58 148

^a Yield of pure isolated product based on <u>1</u>.

stirring for 45 min. A solution of <u>la</u> (1.62g, 0.01 mol) in dry benzene (50 ml) is then added dropwise (30 min) and the reaction mixture is further refluxed for 40 hr. It is then cooled, poured over 5% H_2SO_4 (100 ml), the organic layer separated and the aqueous layer extracted with EtOAc (50 ml). The combined extracts are washed with water (2x100 ml), dried (Na_2SO_4) and evaporated to give crude <u>6a</u>, which is purified by passing through silica gel column using EtOAc-hexane (1:20) as eluent; colourless crystals (CHCl₃-hexane), yield 1.30g (60%). <u>Acknowledgement</u>.- A.D thanks C.S.I.R., New Delhi for Senior Research Fellowship.Financial assistance by U.G.C. New Delhi under COSSIST programme is also acknowledged.

References and Notes

- Part 69 of the series; Part 68: A. Thomas, J.N. Vishwakarma, S. Apparao, H. Ila and H. Junjappa, <u>Tetrahedron</u> (communicated).
- 2. S. Apparao, A. Datta, H. Ila and H. Junjappa, Synthesis, 169 (1985).
- 3. Reformatsky reagents are known to undergo condensation with α -bromoesters to give β -ketoesters as the side products; H.O. House in 'Modern Synthetic Reactions', W.A. Benjamin, Inc., 1972, Chapt. 10, p. 673-675.
- 4. N.K. Kochetkov, L.J. Kudryashov and B.P. Gottich, <u>Tetrahedron, 12</u>, 63 (1961).
- <u>7</u>: 0i1; y_{max} (neat) 3240(0H); 1680(CO) cm⁻¹; δ_H(CC1₄): 1.38(t,3H,CH₃CH₂); 2.30(s,3H, CH₃); 4.32(q,2H,OCH₂CH₃); 6.56(brd,J=8Hz,1H,H=5); 6.68(brs,1H,H=3); 7.60(d,J=8Hz,1H,H=6); 10.60(s,1H,OH, exchangeable with D₂O). The chemical shift values for aromatic and methyl protons for <u>7</u> are very similar to those reported for methyl m-cresotate, ref. 10.
- The structures of all the products were established with the help of spectral and analytical data.
- 7. <u>6h</u>: y_{max} (KBr): 3248(br,OH); 1695(CO) cm⁻¹; δ_H (CDCl₃): 1.43(t,3H,CH₃CH₂); 1.35-1.97 (m,6H,CH₂); 2.30(s,3H,SCH₃); 2.77-2.86(m,2H,CH₂); 3.10-3.32(m,2H,CH₂); 4.43(q,2H,OCH₂CH₃); 6.73(s,1H,Ar<u>H</u>); 10.48(s,1H,OH,exchangeable with D₂O); <u>8</u>: colourless crystals (hexane); m.p. 61°C;)_{max} (KBr): 3210(br,OH); 1665(CO); δ_H(CDCl₃): 1.40(t,3H,CH₃CH₂); 1.30-2.0 (m,6H,CH₂); 2.53-2.86(m,4H,CH₂); 4.32(q,2H,OCH₂CH₃); 6.52(s,1H,Ar<u>H</u>); 7.43(s,1H,Ar<u>H</u>); 10.40(s,1H,OH,exchangeable with D₂O).
- 8. For a review, see: P. Bamfield, P.F. Gordon, Chem. Soc. Rev., 13, 441 (1984).
- D.H.R. Barton, G. Dressaire, B.J. Willis, A.G.M. Barrett and M.Pfeffer, <u>J. Chem. Soc</u>. Perkin Trans.I, 665 (1982) and references therein.
- T-H. Chan and P. Brownbridge, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 3534 (1980). (Received in UK 24 November 1987)